Sketching Sparse Matrices

نویسندگان

  • Gautam Dasarathy
  • Parikshit Shah
  • Badri Narayan Bhaskar
  • Robert D. Nowak
چکیده

This paper considers the problem of recovering an unknown sparse p× p matrix X from an m ×m matrix Y = AXBT , where A and B are known m × p matrices with m p. The main result shows that there exist constructions of the “sketching” matrices A and B so that even if X has O(p) non-zeros, it can be recovered exactly and efficiently using a convex program as long as these non-zeros are not concentrated in any single row/column of X. Furthermore, it suffices for the size of Y (the sketch dimension) to scale as m = O (√ # nonzeros in X × log p ) . The results also show that the recovery is robust and stable in the sense that if X is equal to a sparse matrix plus a perturbation, then the convex program we propose produces an approximation with accuracy proportional to the size of the perturbation. Unlike traditional results on sparse recovery, where the sensing matrix produces independent measurements, our sensing operator is highly constrained (it assumes a tensor product structure). Therefore, proving recovery guarantees require non-standard techniques. Indeed our approach relies on a novel result concerning tensor products of bipartite graphs, which may be of independent interest. This problem is motivated by the following application, among others. Consider a p × n data matrix D, consisting of n observations of p variables. Assume that the correlation matrix X := DDT is (approximately) sparse in the sense that each of the p variables is significantly correlated with only a few others. Our results show that these significant correlations can be detected even if we have access to only a sketch of the data S = AD with A ∈ Rm×p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sketching Sparse Covariance Matrices and Graphs

This paper considers the problem of recovering a sparse p×p matrix X given an m×m matrix Y = AXB , where A and B are known m× p matrices with m p. The main result shows that there exist constructions of the “sketching” matrices A and B so that even if X has O(p) non-zeros, it can be recovered exactly and efficiently using convex optimization as long as these non-zeros are not concentrated in an...

متن کامل

Model-based Sketching and Recovery with Expanders

Linear sketching and recovery of sparse vectors with randomly constructed sparse matrices has numerous applications in several areas, including compressive sensing, data stream computing, graph sketching, and combinatorial group testing. This paper considers the same problem with the added twist that the sparse coefficients of the unknown vector exhibit further correlations as determined by a k...

متن کامل

Limits on Sparse Support Recovery via Linear Sketching with Random Expander Matrices

Linear sketching is a powerful tool for the problem of sparse signal recovery, having numerous applications such as compressive sensing, data stream computing, graph sketching, and routing. Motivated by applications where the positions of the non-zero entries in a sparse vector are of primary interest, we consider the problem of support recovery from a linear sketch taking the form Y = X +Z. We...

متن کامل

Isometric sketching of any set via the Restricted Isometry Property

In this paper we show that for the purposes of dimensionality reduction certain class of structured random matrices behave similarly to random Gaussian matrices. This class includes several matrices for which matrix-vector multiply can be computed in log-linear time, providing efficient dimensionality reduction of general sets. In particular, we show that using such matrices any set from high d...

متن کامل

Multiresolution Matrix Compression

Multiresolution Matrix Factorization (MMF) is a recently introduced method for finding multiscale structure and defining wavelets on graphs and matrices. MMF can also be used for matrix compression (sketching). However, the original MMF algorithm of (Kondor et al., 2014) scales with n or worse (where n is the number of rows/columns in the matrix to be factorized) making it infeasible for large ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1303.6544  شماره 

صفحات  -

تاریخ انتشار 2013